概要シート

対策名		290421 太	陽熱給湯設備の導入		
対策タイプ		燃料転換			
対象業種	産業用業務用				
 分類	給湯設備				
	1. 太陽熱を利用して	40~60℃の温:			
			で消費する燃料の削減が可能になり、CO		
	出量を減らすことが				
	 2. 太陽熱給湯システ <i>』</i>	ムのタイプ			
	太陽熱温水器とソー		が代表的。		
	システム	構成機器	特徴		
	太陽熱温水器	集熱器	集熱器と貯湯槽を一体化している。加熱前		
		貯湯槽	│後の密度差を利用して水を循環するので、 │循環ポンプが不要(自然循環型と呼ばれる)		
			る)。冬季の凍結防止対策が必要。構造か		
	> /	#=±+ DD	簡単で安価。		
	ソーラーシステム	集熱器 蓄熱槽	集熱器で高温に熱した不凍液等を集熱ホーンプで循環させ、蓄熱槽内で水を加温す		
		_{雷然信} 集熱ポンプ	る。不凍液を使用するので冬季の凍結防止		
		補助熱源	対策上は有利。太陽熱温水器よりも高価。 		
		(オプション)			
	貯湯槽				
対策の概要	出湯管	→ 給湯 負荷 ← 給水	蓄熱槽 集熱ポンプ 集熱ポンプ		
	太陽熱温水器 ソーラーシステム				
	3. 集熱器のタイプ				
	平板形と真空ガラス管形がある。				
	特徴				
	枚の)金属板を使って	官を取り付けるデューフィンジートがと、2 「水路を構成するチューブインシート形があ -ブインシート形のほうが集熱板に接触する		
	熱媒	^某 面積が大きいた	め太陽エネルギーの伝熱性が良い。		
			Pに集熱板を配置した真空ガラス管形集熱器 間を真空にした真空ガラス 2 重管形集熱器		
			101と美工化サル美工ルノハム キョルキャッ		

概要シート

留意事項	1. 補助熱源には太陽エネルギーが利用できない場合にも給湯負荷を供給できるだ
	けの能力が必要である。
	2. 太陽依存率(=太陽熱で賄われた熱量/必要熱量)は給湯負荷の小さい夏期の晴
	天日に 100%以上にならないようにすることが、集熱した熱を無駄にしないた
	めには望ましい。負荷に対して太陽依存率を高くしすぎると経済性が悪化する。
	3. 蓄熱槽、貯湯槽には確実に保温を施し、熱損失を抑制することが重要である。
参考文献	[1]『平成 21 年度 業務用太陽熱利用システムの設計ガイドライン』(独立行政法人
	新エネルギー・産業技術総合開発機構)

計測シート

対策名	290421 太陽熱給湯設備の導入		
	燃料転換		
対象業種	産業用業務用		
 分類	給湯設備		
内容・目的	 太陽熱で集熱器を流れる水、不凍液等の熱媒体を加熱し、40~60℃の給湯の熱源として利用する。給湯器や温水ボイラーで消費する燃料の削減が可能になり、CO₂排出量を減らすことができる。 太陽熱給湯設備の集熱面に入射した日射量と、利用設備に供給された給湯熱量を測定することにより、計測期間において実際に利用設備に供給された給湯熱量およびシステム効率*を計測する。 		
フロー図と計測箇所	1. 太陽熱温水器の場合 Pi湯槽 W 電力計 Fi 流量計 Ti 温度計 Si 日射計 Si 日射計		

計測シート

	1 汨庇测点			
	1. 温度測定	7010ELECTE (110 0 1 00 4 0 5 = = 4)		
	計器	測温抵抗体 (JIS C 1604 のクラス A)		
	設置場所	・太陽熱温水器の集熱器出入口		
	wat retr	・ソーラーシステムの蓄熱槽給水口および蓄熱槽温水出口		
	精度	測定精度±0.1 ℃、分解能 0.05 ℃以下		
	2. 流量測定			
	計器	JIS B 7552 で校正された流量計またはこれと同等のもの		
	設置場所	・太陽熱温水器の給水ライン		
		・ソーラーシステムの蓄熱槽の給水ライン		
	精度	±2.0%		
	3. 日射量測定			
計測装置	計器	全天日射計 (ISO 9060 の 2 次標準または 1 級)		
司		一年以内に校正されたもの		
	設置場所	集熱器受熱面と同一方位・同一傾斜角で周辺障害物の陰および		
		周辺建物による反射の影響がない位置		
	精度	フルスケールの±1%		
	4. 電力測定			
	計器	電力計		
	設置場所	集熱ポンプに給電している分電盤		
	精度	±2.0%		
	1. 天候や給湯需要	要の日変化を勘案して、計測期間は 1 カ月程度とすることが望まし		
	لاً ل			
計測留意事項				
		ラ文弘が 八と V・/と Vハ 日子即に 及り フロ 川 と 人/他 り ひここが 主 6		
	しい。			
	1. 計測データに基	基づいて次式によりシステム効率ηcd を算定する。		
	η cd= Qp÷	Ac÷Hap		
	Qp:期間中の給湯熱量(GJ)			
	Ac:集熱器の有効面積(m²)			
	Qp:期間中	Qp: 期間中の積算受熱面日射量(GJ/m²)		
	Z P 7/31-3 1	· (00) //////////////////////////////////		
1-2	2 口射量測中の4			
補足説明	2. 日射量測定の代替			
	1)同一事業所内に、異なる傾斜角・方位角の集熱器を持つ太陽熱給湯設備が複数			
	ある場合には、一か所で測定した水平面全天日射量から算定した傾斜面日射量を			
	用いてもよい。			
	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
	にすること。			
	-			
	· NEDO、日本領	気象協会『日射関連データの作成調査』、『平成 9 年度調査報告書』		

計測シート

	NEDO-NP-9703
	・JIS C8907『太陽光発電システムの発電電力量推定方法』附属書 1
	2) 受熱面日射を計測できない場合は、最寄りのアメダス観測地点における日照時
	間データを用いて推定した月平均水平面全天日射量から算定した値を使用して
	もよい。
	日照時間から全天日射量を推計する方法については以下の文献を参考にするこ
	と。
	・NEDO、日本気象協会『日射関連データの作成調査』、『平成 9 年度調査報告書』
	NEDO-NP-9703
	・大関、他『太陽光発電システムの評価に関する日射量の推定方法』、『電気学会論
	文誌 B 第 125 巻 1 号 118-126』 (2005)
	3. 参考文献
	JIS A 4112_2011『太陽集熱器』
	※太陽熱利用給湯設備のシステム効率
用語説明	太陽熱利用給湯設備の集熱器有効面に入射した計測期間中の合計日射量に対して、
	実際に利用設備に供給された計測期間中の合計熱量の比。

算定シート

対策名	290421 太陽熱給湯設備の導入			
対策タイプ	燃料転換			
対象業種	産業用 業務用			
分類	給湯設備			
目的	太陽熱で集熱器を流れる水、不凍液等の熱媒体を加熱し、40~60℃の給湯の熱源として利用する。給湯器や温水ボイラーで消費する燃料の削減が可能になり、CO₂排出量を減らすことができる。 以下に、太陽熱給湯システムの集熱量・CO₂削減効果の算定方法を示す。			
計算条件	 ・集熱器 有効面積 A_C: 100m² 傾斜角: 30° 方位角: 0°(南から時計回りに計る) ・システム効率 ηcd: 40% ・集熱ポンプ ポンプ動力 Pss: 80W 年間稼働時間 tss: 2,400 h ・従来型ガス温水ボイラー 使用ガス 13A 効率(低位発熱量基準) ηw: 90% ガス単価 yf: 125 円/m³ ガス発熱量(高位) Hhf: 44.8GJ/千 m³ ガス発熱量(低位) Hlf:: 40.5GJ/千 m³ CO₂排出係数 fcf: 0.0136 tC/GJ 原油換算係数 fo: 0.0258 kL/GJ ・購入電力 電力単価 ye: 17 円/kWh CO₂排出係数 fce: 0.518t-CO₂/千 kWh 熱量換算係数 He: 9.97GJ/千 kWh 			
計算方法	 ・年間積算受熱面日射量 Hay の算出設置地点、集熱器方位角、集熱器傾斜角から、集熱器面上の年平均日積算傾斜面日射量 Hs を入手する。年平均日積算傾斜面日射量のデータは、NEDO 日射量データベース閲覧システム(monsola)等から入手できる最寄りの地点のデータを使用する。年間積算受熱面日射量 Hay は、Hs に年間日数を乗じることにより算出する。 Hay = Hs × 365 (1) たとえば、設置場所が東京都府中市であれば、NEDO 日射量データベース閲覧システム(monsola)より、Hs = 3.87 kWh/m²・日したがって、(1)式より Hay = 3.87×365×3.6÷1,000 GJ/m² = 3.87×365×3.6÷1,000 GJ/m² = 5.09 GJ/m² ・年間太陽熱利用熱量 Qy の計算 Qy = Hay × Ac × ηcd (2) 東京都府中市の例では、Qy = 203 GJ 			

算定シート

	・集熱ポンプ消費電	カ Essy の計算			
	Essy = Pss × tss ÷1,000 (3) (3)式より Essy = 190 kWh/年 ・温水ボイラーのガス使用量の年間削減量 △F △F = Qy ÷ HIf ÷ ηw (4) (4)式より、△F = 5.57 千 m³				
	・CO₂削減量 ⊿C の計算				
ガス使用量の削減による CO2削減量 △Cf					
	(5)式より、			12)	
				,	
	\angle Ce = Essy $\div 1$,				
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □				
		0.1 tCO ₂	_		
	CO ₂ 削減量⊿C				
	$\triangle C = \triangle Cf - \triangle Ce $ (7)				
	(7)式より、⊿C =	12.4 - 0.1			
	=	12.3 tCO ₂			
	・削減金額 <u>/</u> Y の計算				
	ガス使用量の削減に	よる削減金額	⊴Yf		
	$\triangle Yf = \triangle F \times y$	rf (8	3)		
	 (8)式より、⊿Yf = 5.57 × 125				
	:	= 696 千円			
	ポンプ動力の消費にかかる費用⊿Yp ⊿Yp = Essy × ye (9) (9)式より、⊿Yp = 190×17÷1,000				
	;	= 3 千円			
	∠Y= ∠Yf - ∠Yμ		10)		
	(10) 式より、⊿Y = 696−3				
	4 - -	= 693 千円		1	
	各月の	単位	効果	備考	
	①燃料消費削減量	千 m³/年	5.57	= <u></u>	
-L	②購入電力増加量	kWh/年	190	= Essy	
効果	③原油換算削減量	k L/年	6.39	=($\triangle F \times Hhf - Essy \div 1,000 \times$	
		÷ 00 /⁄T	104	He)×fo	
	4CO ₂ 削減量	t-CO ₂ /年	12.4	= <u>∠</u> C	
	⑤削減金額	千円/年	693	= △ Y	
 測定/取得データ	1. 必須データ				
烈化/収行/一分	・平均日積算受熱面日射量 ・集熱有効面積				
		口封データン生	執而積だけたF	BL\ブナ隍熱利田熱島が簡価に⇒↓	
	1. この方法では、日射データと集熱面積だけを用いて太陽熱利用熱量が簡便に計				
留意事項	算できる。一方、負荷に関わらず集熱した太陽熱はすべて利用できると仮定し ているうえ、システムの仕様や給水温度の季節変化などを考慮していないので、				
	計算結果は太陽熱利用量の概略値であるとみなすべきである。				
	ロチ加木は八物	田一多一日 日一多一日	= < W & C V/4	() (C (W 0)	

算定シート

	2. モニタリングにおいては、計測データから算定したシステム効率値を使用する。
出典・参考資料	[1] 『業務用太陽熱利用システムの設計・施工ガイドライン』(一般社団法人 ソーラーシステム振興協会) [2] 『建築物のエネルギー消費性能に関する技術情報 太陽熱利用給湯設備』(建築研究所) [3] 『NEDO 日射量データベース閲覧システム(monsola)』(新エネルギー産業技術総合開発機構)
補足説明	1. 太陽熱利用熱量:システムで利用できる熱量(=集熱量-熱損失量) 2. システム効率 :太陽熱利用熱量/日射量。給湯システムでは 40%、暖房給湯 システムでは 35%とする。